Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.835
Filtrar
1.
Sci Rep ; 14(1): 7718, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565556

RESUMO

We aimed to examine the relationship between abdominal computed tomography (CT)-based body composition data and both renal function decline and all-cause mortality in patients with non-dialysis chronic kidney disease (CKD). This retrospective study comprised non-dialysis CKD patients who underwent consecutive unenhanced abdominal CT between January 2010 and December 2011. CT-based body composition was measured using semiautomated method that included visceral fat, subcutaneous fat, skeletal muscle area and density, and abdominal aortic calcium score (AAS). Sarcopenia and myosteatosis were defined by decreased skeletal muscle index (SMI) and decreased skeletal muscle density, respectively, each with specific cutoffs. Risk factors for CKD progression and survival were identified using logistic regression and Cox proportional hazard regression models. Survival between groups based on myosteatosis and AAS was compared using the Kaplan-Meier curve. 149 patients (median age: 70 years) were included; 79 (53.0%) patients had sarcopenia and 112 (75.2%) had myosteatosis. The median AAS was 560.9 (interquartile range: 55.7-1478.3)/m2. The prognostic factors for CKD progression were myosteatosis [odds ratio (OR) = 4.31, p = 0.013] and high AAS (OR = 1.03, p = 0.001). Skeletal muscle density [hazard ratio (HR) = 0.93, p = 0.004] or myosteatosis (HR = 4.87, p = 0.032) and high AAS (HR = 1.02, p = 0.001) were independent factors for poor survival outcomes. The presence of myosteatosis and the high burden of aortic calcium were significant factors for CKD progression and survival in patients with non-dialysis CKD.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Humanos , Idoso , Sarcopenia/diagnóstico por imagem , Sarcopenia/etiologia , Sarcopenia/patologia , Cálcio , Prognóstico , Estudos Retrospectivos , Músculo Esquelético/patologia , Tomografia Computadorizada por Raios X , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/patologia
2.
Cells ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534325

RESUMO

Calcific Aortic Valve Disease (CAVD) is a significant concern for cardiovascular health and is closely associated with chronic kidney disease (CKD). Aortic valve endothelial cells (VECs) play a significant role in the onset and progression of CAVD. Previous research has suggested that uremic toxins, particularly indoxyl sulfate (IS), induce vascular calcification and endothelial dysfunction, but the effect of IS on valve endothelial cells (VECs) and its contribution to CAVD is unclear. Our results show that IS reduced human VEC viability and increased pro-calcific markers RUNX2 and alkaline phosphatase (ALP) expression. Additionally, IS-exposed VECs cultured in pro-osteogenic media showed increased calcification. Mechanistically, IS induced endothelial-to-mesenchymal transition (EndMT), evidenced by the loss of endothelial markers and increased expression of mesenchymal markers. IS triggered VEC inflammation, as revealed by NF-kB activation, and decreased integrin-linked kinase (ILK) expression. ILK overexpression reversed the loss of endothelial phenotype and RUNX2, emphasizing its relevance in the pathogenesis of CAVD in CKD. Conversely, a lower dose of IS intensified some of the effects in EndMT caused by silencing ILK. These findings imply that IS affects valve endothelium directly, contributing to CAVD by inducing EndMT and calcification, with ILK acting as a crucial modulator.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Proteínas Serina-Treonina Quinases , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Indicã , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/patologia
3.
Sci Rep ; 14(1): 7577, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555397

RESUMO

Chronic Kidney Disease (CKD) associated complications are associated with increased inflammation through the innate immune response, which can be modulated with anti-inflammatory agents. An active ingredient derived from the Nuphar lutea aquatic plant, 6,6'-dihydroxythiobinupharidine (DTBN) has anti-inflammatory properties, mainly through the inhibition of NF-κB. We tested the effects of DTBN on mice with CKD. After preliminary safety and dosing experiments, we exposed 8 weeks old male C57BL/6J mice to adenine diet to induce CKD. Control and CKD animals were treated with IP injections of DTBN (25 µg QOD) or saline and sacrificed after 8 weeks. Serum urea and creatinine were significantly decreased in CKD-DTBN Vs CKD mice. Kidney histology showed a decrease in F4/80 positive macrophage infiltration, damaged renal area, as well as decreased kidney TGF-ß in CKD-DTBN Vs CKD mice. Kidney inflammation indices (IL-1ß, IL-6 and P-STAT3) were significantly decreased in CKD-DTBN as compared to CKD mice. DTBN treatment showed no apparent damage to tissues in control mice, besides a decrease in weight gain and mild hypoalbuminemia without proteinuria. Thus, DTBN significantly improved renal failure and inflammation indices in CKD mice. Therefore, this and similar substances may be considered as an additional treatment in CKD patients.


Assuntos
Alcaloides , Nuphar , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Rim/patologia , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças
4.
Biochem Biophys Res Commun ; 709: 149709, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38554603

RESUMO

Ischemia-reperfusion (I/R) leads to tissue damage in transplanted kidneys, resulting in acute kidney injury (AKI) and chronic graft dysfunction, which critically compromises transplant outcomes, such as graft loss. Linaclotide, a guanylate cyclase C agonist clinically approved as a laxative, has recently been identified to exhibit renoprotective effects in a chronic kidney disease (CKD) model. This study evaluates the therapeutic effects of linaclotide on AKI triggered by I/R in a rat model with an initial comparison with other laxatives. Here, we show that linaclotide administration resulted in substantial reduction in serum creatinine levels, reflective of enhanced renal function. Histological examination revealed diminished tubular damage, and Sirius Red staining confirmed less collagen deposition, collectively indicating preserved structural integrity and mitigation of fibrosis. Further analysis demonstrated lowered expression of TGF-ß and associated fibrotic markers, α-SMA, MMP2, and TIMP1, implicating the downregulation of the fibrogenic TGF-ß pathway by linaclotide. Furthermore, one day after I/R insult, linaclotide profoundly diminished macrophage infiltration and suppressed critical pro-inflammatory cytokines such as TNF, IL-1ß, and IL-6, signifying its potential to disrupt initial inflammatory mechanisms integral to AKI pathology. These findings suggest that linaclotide, with its established safety profile, could extend its benefits beyond gastrointestinal issues and potentially serve as a therapeutic intervention for organ transplantation. Additionally, it could provide immediate and practical insights into selecting laxatives for managing patients with AKI or CKD, regardless of the cause, and for those receiving dialysis or transplant therapy.


Assuntos
Injúria Renal Aguda , Peptídeos , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Laxantes/metabolismo , Laxantes/farmacologia , Laxantes/uso terapêutico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Insuficiência Renal Crônica/patologia , Isquemia/patologia , Reperfusão , Fator de Crescimento Transformador beta/metabolismo , Fibrose
5.
Kidney Int ; 105(4): 671-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519234

RESUMO

Rates of chronic kidney disease of unknown etiology are high in Aguascalientes, Mexico. Kidneys of adolescents are small by ultrasonography, compatible with oligonephronia, whereas proteinuria and higher estimated glomerular filtration rates and blood pressures among those with relatively higher kidney volumes probably flag relatively greater degrees of compensatory hypertrophy. Glomerulomegaly and podocytopathy, and later segmental glomerulosclerosis in biopsies, suggest a cascade driven by nephron deficiency. Better measures of glomerular number and volume should improve understanding, facilitate risk assessment, and guide interventions.


Assuntos
Glomerulosclerose Segmentar e Focal , Insuficiência Renal Crônica , Humanos , Adolescente , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Rim/patologia , Néfrons , Taxa de Filtração Glomerular , Insuficiência Renal Crônica/patologia
6.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529522

RESUMO

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Ratos Wistar , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Inflamação/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/complicações , Fibrose
7.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542491

RESUMO

Effective management of glomerular kidney disease, one of the main categories of chronic kidney disease (CKD), requires accurate diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for the assessment of specific aspects of glomerular diseases have been reported in the literature. Though, the vast majority of these have not been implemented in clinical practice or are not available on a global scale due to limited access, missing medical infrastructure, or economical as well as political reasons. The aim of this review is to compile all currently available information on the diagnostic, prognostic, and predictive biomarkers currently available for the management of glomerular diseases, and provide guidance on the application of these biomarkers. As a result of the compiled evidence for the different biomarkers available, we present a decision tree for a non-invasive, biomarker-guided diagnostic path. The data currently available demonstrate that for the large majority of patients with glomerular diseases, valid biomarkers are available. However, despite the obvious disadvantages of kidney biopsy, being invasive and not applicable for monitoring, especially in the context of rare CKD etiologies, kidney biopsy still cannot be replaced by non-invasive strategies.


Assuntos
Rim , Insuficiência Renal Crônica , Humanos , Progressão da Doença , Rim/patologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/patologia , Glomérulos Renais/patologia , Biomarcadores , Taxa de Filtração Glomerular
8.
Ren Fail ; 46(1): 2331612, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38527916

RESUMO

BACKGROUND: Circular RNAs (CircRNAs) have been shown to be involved in the development of chronic kidney disease (CKD). This study aimed to investigate the role of Circ1647 in renal fibrosis, which is a hallmark of CKD. METHODS: In this study, we established a unilateral ureteral obstruction (UUO) model and delivered Circ1647 RfxCas13d knockdown plasmid into renal parenchymal cells via retrograde injection through the ureter followed by electroporation. After that, the pathological changes were determined by Hematoxylin and Eosin. Meanwhile, Immunohistochemistry, qRT-PCR and Western blot were conducted to assess the degree of fibrosis. In addition, overexpressing of Circ1647 in renal tubular epithelial cells (TCMK1) was performed to investigate the underlying mechanisms of Circ1647. RESULTS: Our results displayed that electroporation-mediated knockdown of Circ1647 by RfxCas13d knockdown plasmid significantly inhibited renal fibrosis in UUO mice as evidenced by reduced expression of fibronectin and α-SMA (alpha-smooth muscle actin). Conversely, overexpression of Circ1647 in TCMK1 cells promoted the fibrosis. In terms of mechanism, Circ1647 may mediate the PI3K/AKT Signaling Pathway as demonstrated by the balance of the phosphorylation of PI3K and AKT in vivo and the aggravated phosphorylation of PI3K and AKT in vitro. These observations were corroborated by the effects of the PI3K inhibitor LY294002, which mitigated fibrosis post Circ1647 overexpression. CONCLUSION: Our study suggests that Circ1647 plays a significant role in renal fibrosis by mediating the PI3K/AKT signaling pathway. RfxCas13d-mediated inhibition of Circ1647 may serve as a therapeutic target for renal fibrosis in CKD.


Assuntos
RNA Circular , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Fibrose , Rim/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , RNA Circular/genética , RNA Circular/metabolismo
9.
Science ; 383(6685): eadd6371, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386758

RESUMO

The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.


Assuntos
Injúria Renal Aguda , Rim , Insuficiência Renal Crônica , Fatores de Transcrição SOX9 , Animais , Humanos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Células Epiteliais , Fibrose , Rim/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fatores de Transcrição SOX9/genética , Regeneração , Camundongos
10.
Exp Dermatol ; 33(2): e15037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389180

RESUMO

The skin is increasingly recognized as a biological active organ interacting with the immune system. Given that the epidermal skin layer actively releases various cytokines, non-invasive skin sampling methods could detect these cytokines, offering insights into clinical conditions. This study aims non-invasively measuring cytokine levels directly from the skin surface to characterize different inflammatory chronic disorders in the adult and elderly population: psoriasis, diabetes type 2, rosacea, chronic kidney disease (CKD) and aging. Cytokines IL-1ß, IL-8 and IL-10 were sampled from healthy subjects and patients aged 18-80 using skin surface wash technique. A well with sterile phosphate-buffered saline solution was placed on the skin for 30 min, and the extracted solution was collected from the well for further cytokine levels analysis using ELISA assay. Results show distinct cytokine profiles in different pathological processes, healthy controls, affected and unaffected areas. Aging was associated with increased IL-1ß, IL-8, and IL-10 levels in skin. In diabetes, IL-1ß and IL-8 levels were elevated in lesional areas, while IL-10 levels were decreased in non-lesional skin. Psoriatic lesions showed elevated levels of IL-1ß and IL-8. Rosacea patients had lower IL-10 levels in both lesional and non-lesional areas. CKD patients exhibited significantly lower IL-10 levels compared to healthy individuals. In conclusion, skin surface wash-derived cytokine profiles could serve as "alert biomarkers" for disease prediction, enabling early detection. Additionally, this method's cost-effectiveness allows pre-screening of molecules in clinical studies and holds potential as a tool for biomarkers and omics analysis, enhancing disorder characterization and disease management.


Assuntos
Diabetes Mellitus , Psoríase , Insuficiência Renal Crônica , Rosácea , Adulto , Humanos , Idoso , Citocinas , Interleucina-10 , Interleucina-8 , Pele/patologia , Biomarcadores , Interleucina-1beta , Rosácea/patologia , Insuficiência Renal Crônica/patologia
11.
Br J Radiol ; 97(1154): 392-398, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308024

RESUMO

OBJECTIVE: Renal fibrosis is a final common pathological hallmark in the progression of chronic kidney disease (CKD). Non-invasive evaluation of renal fibrosis by mapping renal stiffness obtained by shear wave elastography (SWE) may facilitate the clinical therapeutic regimen for CKD patients. METHODS: A cohort of 162 patients diagnosed with CKD, who underwent renal biopsy, was prospectively and consecutively recruited between April 2019 and December 2021. The assessment of renal cortex stiffness was performed using SWE imaging. The patients were classified into different groups based on pathological renal fibrosis (mild group: n = 74; moderate-to-severe group: n = 88). Binary logistic regression model and generalized additive model were conducted to investigate the association of renal elasticity with renal fibrosis. RESULTS: Compared with the mildly impaired group, the moderate-to-severe group showed a significant decline in renal elasticity (P < .001). In the fully adjusted model, each 10 kPa drop in renal elasticity was associated with a 3.5-fold increment in the risk of moderate-to-severe renal fibrosis (fully adjusted odds ratio, 4.54; 95% CI, 2.41-8.57). Particularly, participants in the lowest elasticity group (≤29.92 kPa) had a 20-fold increased chance of moderate-to-severe renal fibrosis than those in the group with highest elasticity (≥37.93 kPa). An inverse linear association was observed between renal elasticity increment and moderate-to-severe renal fibrosis risk. CONCLUSION: There is a negative linear association between increased renal elasticity and moderate-to-severe renal fibrosis risk among CKD patients. Patients with diminished renal stiffness have a higher risk of moderate-to-severe renal fibrosis. ADVANCES IN KNOWLEDGE: CKD patients with reduced renal stiffness have a higher likelihood of moderate-to-severe renal fibrosis.


Assuntos
Técnicas de Imagem por Elasticidade , Insuficiência Renal Crônica , Humanos , Técnicas de Imagem por Elasticidade/métodos , Rim/diagnóstico por imagem , Rim/patologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/patologia , Elasticidade , Fibrose , Cirrose Hepática/patologia
12.
Am J Physiol Renal Physiol ; 326(4): F563-F583, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299215

RESUMO

Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Animais , Humanos , Roedores , Modelos Animais de Doenças , Insuficiência Renal Crônica/patologia , Rim/patologia , Injúria Renal Aguda/patologia
13.
Int J Biochem Cell Biol ; 169: 106549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340950

RESUMO

BACKGROUND: Chronic kidney disease (CKD) has a high incidence and poor prognosis; however, no effective treatment is currently available. Our previous study found that the improvement effect of the herb pair of Rhubarb-Astragalus on CKD is likely related to the inhibition of the TGF-ß1/p38-MAPK pathway. In the present study, a p38-MAPK inhibitor was used to further investigate the inhibitory effect of Rhubarb-Astragalus on the TGF-ß1/p38-MAPK pathway and its relationship with autophagy. METHODS: A rat model of unilateral ureteral obstruction (UUO) was established, and a subgroup of rats was administered Rhubarb-Astragalus. Renal function and renal interstitial fibrosis (RIF) were assessed 21 d after UUO induction. In vitro, HK-2 cells were treated with TGF-ß1 and a subset of cells were treated with Rhubarb-Astragalus or p38-MAPK inhibitor. Western blotting, immunohistochemistry, and qRT-PCR analyses were used to detect the relevant protein and mRNA levels. Transmission electron microscopy was used to observe autophagosomes. RESULTS: Rhubarb-Astragalus treatment markedly decreased the elevated levels of blood urea nitrogen, serum creatinine, and urinary N-acetyl-ß-D-glucosaminidase; attenuated renal damage and RIF induced by UUO; and reduced the number of autophagosomes and lysosomes in UUO-induced renal tissues. Additionally, Rhubarb-Astragalus reduced the protein and mRNA levels of α-SMA, collagen I, LC3, Atg3, TGF-ß1, p38-MAPK, smad2/3, and TAK1 in renal tissues of UUO rats. Rhubarb-Astragalus also reduced protein and mRNA levels of these indicators in vitro. Importantly, the effect of the p38-MAPK inhibitor was similar to that of Rhubarb-Astragalus. CONCLUSIONS: Rhubarb-Astragalus improves CKD possibly by downregulating autophagy via the p38-MAPK/TGF-ß1 and p38-MAPK/smad2/3 pathways.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Rheum , Obstrução Ureteral , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Rheum/metabolismo , Regulação para Baixo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Rim/patologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fibrose , Autofagia , RNA Mensageiro/metabolismo
14.
Int Immunopharmacol ; 129: 111650, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342062

RESUMO

Renal fibrosis is a key feature of chronic kidney disease (CKD) progression, whereas no proven effective anti-fibrotic treatments. Forsythiaside A (FTA), derived from Forsythia suspense, has been found to possess nephroprotective properties. However, there is limited research on its anti-fibrotic effects, and its mechanism of action remains unknown. This study aimed to investigate the suppressive effects of FTA on renal fibrosis and explore the underlying mechanisms. In vitro, we established a HK2 cell model induced by transforming growth factor ß1 (TGF-ß1), and in vivo, we used a mice model induced by unilateral ureteral obstruction (UUO). CCK-8 assay, qRT-PCR, Western blotting, immunofluorescence, flow cytometry, histological staining, immunohistochemistry, TUNEL assay, RNA transcriptome sequencing, and molecular docking were performed. The results showed that FTA (40 µM or 80 µM) treatment improved cell viability and suppressed TGF-ß1-induced fibrotic changes and partial epithelial-mesenchymal transition (EMT). Furthermore, FTA treatment reversed the activation of the PI3K/AKT signaling pathway, and THBS1 was identified as the target gene. We found that THBS1 knockdown suppressed the activation of the PI3K/AKT signaling pathway and reduced the fibrosis and partial EMT-related protein level. Conversely, THBS1 overexpression activated the PI3K/AKT signaling pathway and exacerbated renal fibrosis and partial EMT. In vivo, mice were administered FTA (30 or 60 mg/kg) for 2 weeks, and the results demonstrated that FTA administration significantly mitigated tubular injury, tubulointerstitial fibrosis, partial EMT, and apoptosis. In conclusion, FTA inhibited renal fibrosis and partial EMT by targeting THBS1 and inhibiting activation of the PI3K/AKT pathway.


Assuntos
Glicosídeos , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Obstrução Ureteral/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Transição Epitelial-Mesenquimal , Fibrose , Rim/patologia
15.
Int Immunopharmacol ; 129: 111609, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364742

RESUMO

Obesity is recognized as a major risk factor for chronic kidney disease (CKD), which is accompanied by increased renal lipid build-up, fibrosis, inflammation, apoptosis and pyroptosis. Bicyclol (BIC), a Chinese marketed hepatoprotective drug, has shown excellent anti-inflammatory, anti-fibrosis, anti-apoptotic, and lipid regulation effects in different animal models. In this study, we explored the role and mechanism of BIC in high-fat diet (HFD)-induced obesity-related nephropathy. Mice were fed with HFD for 24 weeks to develop obesity-related nephropathy, while mice in the BIC administration group were treated with BIC (50 mg/kg or 100 mg/kg, once every two days) at the last 12 weeks. We found that BIC treatment relieved the impairment of kidney structure and renal dysfunction caused by HFD. In addition, we found that BIC mitigated HFD-induced renal fibrosis, inflammation, apoptosis and pyroptosis by inhibiting JNK and NF-κB pathways. SV40-MES-13 cells treated with palmitate (PA) were used as the in vitro model. Our data show that BIC pre-administration relieved cellular damage caused by PA through suppressing JNK and NF-κB signaling pathways. In conclusion, we demonstrated that BIC attenuated obesity-induced renal injury by inhibiting chronic inflammation, fibrosis, apoptosis and pyroptosis via targeting JNK and NF-κB pathways. Our data suggested that BIC could be potentially used to prevent obesity-associated nephropathy, which warrants future investigation.


Assuntos
Compostos de Bifenilo , NF-kappa B , Insuficiência Renal Crônica , Animais , Camundongos , NF-kappa B/metabolismo , Rim/patologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Inflamação/metabolismo , Insuficiência Renal Crônica/patologia , Fibrose , Lipídeos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
16.
Am J Physiol Renal Physiol ; 326(4): F622-F634, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420675

RESUMO

Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Baço/metabolismo , Cálcio/metabolismo , Fluoresceína-5-Isotiocianato , Distribuição Tecidual , Ratos Sprague-Dawley , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Minerais , Fígado/metabolismo , Fosfatos , Insuficiência Renal Crônica/patologia
17.
Kidney Int ; 105(4): 775-790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286179

RESUMO

Chronic kidney disease (CKD) is characterized by kidney inflammation and fibrosis. However, the precise mechanisms leading to kidney inflammation and fibrosis are poorly understood. Since histone deacetylase is involved in inflammation and fibrosis in other tissues, we examined the role of histone deacetylase 3 (HDAC3) in the regulation of inflammation and kidney fibrosis. HDAC3 is induced in the kidneys of animal models of CKD but mice with conditional HDAC3 deletion exhibit significantly reduced fibrosis in the kidneys compared with control mice. The expression of proinflammatory and profibrotic genes was significantly increased in the fibrotic kidneys of control mice, which was impaired in mice with HDAC3 deletion. Genetic deletion or pharmacological inhibition of HDAC3 reduced the expression of proinflammatory genes in cultured monocytes/macrophages. Mechanistically, HDAC3 deacetylates Lys122 of NF-κB p65 subunit turning on transcription. RGFP966, a selective HDAC3 inhibitor, reduced fibrosis in cells and in animal models by blocking NF-κB p65 binding to κB-containing DNA sequences. Thus, our study identified HDAC3 as a critical regulator of inflammation and fibrosis of the kidney through deacetylation of NF-κB unlocking its transcriptional activity. Hence, targeting HDAC3 could serve as a novel therapeutic strategy for CKD.


Assuntos
Histona Desacetilases , Nefrite , Insuficiência Renal Crônica , Animais , Camundongos , Fibrose , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Inflamação/genética , Inflamação/patologia , Rim/patologia , Nefrite/genética , Nefrite/patologia , NF-kappa B/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia
18.
Sci Rep ; 14(1): 439, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172172

RESUMO

Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.


Assuntos
Túbulos Renais , Insuficiência Renal Crônica , Humanos , Túbulos Renais/patologia , Rim/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fibroblastos/fisiologia , Fibrose
19.
Nat Commun ; 15(1): 873, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287030

RESUMO

Epigenetic changes may fill a critical gap in our understanding of kidney disease development, as they not only reflect metabolic changes but are also preserved and transmitted during cell division. We conducted a genome-wide cytosine methylation analysis of 399 human kidney samples, along with single-nuclear open chromatin analysis on over 60,000 cells from 14 subjects, including controls, and diabetes and hypertension attributed chronic kidney disease (CKD) patients. We identified and validated differentially methylated positions associated with disease states, and discovered that nearly 30% of these alterations were influenced by underlying genetic variations, including variants known to be associated with kidney disease in genome-wide association studies. We also identified regions showing both methylation and open chromatin changes. These changes in methylation and open chromatin significantly associated gene expression changes, most notably those playing role in metabolism and expressed in proximal tubules. Our study further demonstrated that methylation risk scores (MRS) can improve disease state annotation and prediction of kidney disease development. Collectively, our results suggest a causal relationship between epigenetic changes and kidney disease pathogenesis, thereby providing potential pathways for the development of novel risk stratification methods.


Assuntos
Metilação de DNA , Insuficiência Renal Crônica , Humanos , Metilação de DNA/genética , Cromatina/genética , Cromatina/metabolismo , Estudo de Associação Genômica Ampla , Rim/metabolismo , Epigênese Genética , Insuficiência Renal Crônica/patologia
20.
Ren Fail ; 46(1): 2295431, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38174742

RESUMO

BACKGROUND: Kidney fibrosis is the common final pathway of virtually all advanced forms of chronic kidney disease (CKD) including diabetic nephropathy (DN), IgA nephropathy (IgAN) and membranous nephropathy (MN), with complex mechanism. Comparative gene expression analysis among these types of CKD may shed light on its pathogenesis. Therefore, we conducted this study aiming at exploring the common and specific fibrosis-related genes involved in different types of CKD. METHODS: Kidney biopsy specimens from patients with different types of CKD and normal control subjects were analyzed using the NanoString nCounter® Human Fibrosis V2 Panel. Genes differentially expressed in all fibrotic DN, IgAN and MN tissues compared to the normal controls were regarded as the common fibrosis-related genes in CKD, whereas genes exclusively differentially expressed in fibrotic DN, IgAN or MN samples were considered to be the specific genes related to fibrosis in DN, IgAN and MN respectively. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of the selected genes. RESULTS: Protein tyrosine phosphatase receptor type C (PTPRC), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), interleukin 10 receptor alpha (IL10RA) and CC chemokine receptor 2 (CCR2) were identified as the potential common genes for kidney fibrosis in different types of CKD, while peroxisome proliferator-activated receptor alpha (PPARA), lactate oxidase (LOX), secreted phosphoprotein 1 (SPP1) were identified as the specific fibrosis-associated genes for DN, IgAN and MN respectively. qRT-PCR demonstrated that the expression levels of these selected genes were consistent with the NanoString analysis. CONCLUSIONS: There were both commonalities and differences in the mechanisms of fibrosis in different types of CKD, the commonalities might be used as the common therapeutic targets for kidney fibrosis in CKD, while the differences might be used as the diagnostic markers for DN, IgAN and MN respectively. Inflammation was highly relevant to the pathogenesis of fibrosis. This study provides further insight into the pathophysiology and treatment of fibrotic kidney disease.


Assuntos
Nefropatias Diabéticas , Glomerulonefrite por IGA , Glomerulonefrite Membranosa , Insuficiência Renal Crônica , Humanos , Glomerulonefrite por IGA/diagnóstico , Insuficiência Renal Crônica/patologia , Glomerulonefrite Membranosa/patologia , Nefropatias Diabéticas/patologia , Fibrose , Rim/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...